Integralen av $$$\tan^{5}{\left(x \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\tan^{5}{\left(x \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \tan^{5}{\left(x \right)}\, dx$$$.

Lösning

Låt $$$u=\tan{\left(x \right)}$$$ vara.

Då gäller $$$x=\operatorname{atan}{\left(u \right)}$$$ och $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (stegen kan ses »).

Alltså,

$${\color{red}{\int{\tan^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{5}}{u^{2} + 1} d u}}}$$

Eftersom graden hos täljaren inte är mindre än graden hos nämnaren, utför polynomdivision (stegen kan ses »):

$${\color{red}{\int{\frac{u^{5}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{3} - u + \frac{u}{u^{2} + 1}\right)d u}}}$$

Integrera termvis:

$${\color{red}{\int{\left(u^{3} - u + \frac{u}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{u d u} + \int{u^{3} d u} + \int{\frac{u}{u^{2} + 1} d u}\right)}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=3$$$:

$$- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\int{u^{3} d u}}}=- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=- \int{u d u} + \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{4}}{4}\right)}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\int{u d u}}}=\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=\frac{u^{4}}{4} + \int{\frac{u}{u^{2} + 1} d u} - {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Låt $$$v=u^{2} + 1$$$ vara.

$$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (stegen kan ses »), och vi har att $$$u du = \frac{dv}{2}$$$.

Integralen kan omskrivas som

$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{1}{2 v} d v}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\int{\frac{1}{2 v} d v}}} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$

Integralen av $$$\frac{1}{v}$$$ är $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Kom ihåg att $$$v=u^{2} + 1$$$:

$$\frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{u^{4}}{4} - \frac{u^{2}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$

Kom ihåg att $$$u=\tan{\left(x \right)}$$$:

$$\frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} - \frac{{\color{red}{u}}^{2}}{2} + \frac{{\color{red}{u}}^{4}}{4} = \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} - \frac{{\color{red}{\tan{\left(x \right)}}}^{2}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}^{4}}{4}$$

Alltså,

$$\int{\tan^{5}{\left(x \right)} d x} = \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}$$

Lägg till integrationskonstanten:

$$\int{\tan^{5}{\left(x \right)} d x} = \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}+C$$

Svar

$$$\int \tan^{5}{\left(x \right)}\, dx = \left(\frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \frac{\tan^{4}{\left(x \right)}}{4} - \frac{\tan^{2}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly