Intégrale de $$$\frac{\sqrt{x}}{8}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sqrt{x}}{8}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(x \right)} = \sqrt{x}$$$ :
$${\color{red}{\int{\frac{\sqrt{x}}{8} d x}}} = {\color{red}{\left(\frac{\int{\sqrt{x} d x}}{8}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{2}$$$ :
$$\frac{{\color{red}{\int{\sqrt{x} d x}}}}{8}=\frac{{\color{red}{\int{x^{\frac{1}{2}} d x}}}}{8}=\frac{{\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{8}=\frac{{\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}}{8}$$
Par conséquent,
$$\int{\frac{\sqrt{x}}{8} d x} = \frac{x^{\frac{3}{2}}}{12}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sqrt{x}}{8} d x} = \frac{x^{\frac{3}{2}}}{12}+C$$
Réponse
$$$\int \frac{\sqrt{x}}{8}\, dx = \frac{x^{\frac{3}{2}}}{12} + C$$$A