Intégrale de $$$\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\, dx$$$.
Solution
Réécrivez $$$\sin\left(2 x \right)\cos\left(x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=x$$$:
$${\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) \cos{\left(2 x \right)} d x}}}$$
Développez l'expression:
$${\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(3 x \right)} \cos{\left(2 x \right)}}{2}\right)d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}$$$ :
$${\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(3 x \right)} \cos{\left(2 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}{2}\right)}}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(\sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}\right)}}}{2}$$
Réécrivez l’intégrande à l’aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=x$$$ et $$$\beta=2 x$$$:
$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = - \sin{\left(x \right)} + \sin{\left(3 x \right)}$$$ :
$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$
Intégrez terme à terme:
$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(x \right)} d x} + \int{\sin{\left(3 x \right)} d x}\right)}}}{4}$$
L’intégrale du sinus est $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$ :
$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{\sin{\left(3 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{\sin{\left(3 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$
Soit $$$u=3 x$$$.
Alors $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{3}$$$.
Ainsi,
$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{3}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{4}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{12} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{12}$$
Rappelons que $$$u=3 x$$$ :
$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{12} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{12}$$
Réécrivez l’intégrande à l’aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=3 x$$$ et $$$\beta=2 x$$$:
$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$ :
$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}}{2}$$
Intégrez terme à terme:
$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{4}$$
L’intégrale du sinus est $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$ :
$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$
Soit $$$u=5 x$$$.
Alors $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{5}$$$.
L’intégrale peut être réécrite sous la forme
$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{4} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{4}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{20} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{20}$$
Rappelons que $$$u=5 x$$$ :
$$- \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left({\color{red}{u}} \right)}}{20} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$
Par conséquent,
$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}$$
Ajouter la constante d'intégration :
$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}+C$$
Réponse
$$$\int \sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\, dx = \left(- \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}\right) + C$$$A