Integralen av $$$\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\, dx$$$.

Lösning

Skriv om $$$\sin\left(2 x \right)\cos\left(x \right)$$$ med hjälp av formeln $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ med $$$\alpha=2 x$$$ och $$$\beta=x$$$:

$${\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) \cos{\left(2 x \right)} d x}}}$$

Utveckla uttrycket:

$${\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right) \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(3 x \right)} \cos{\left(2 x \right)}}{2}\right)d x}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(3 x \right)} \cos{\left(2 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}{2}\right)}}$$

Integrera termvis:

$$\frac{{\color{red}{\int{\left(\sin{\left(x \right)} \cos{\left(2 x \right)} + \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}\right)}}}{2}$$

Skriv om integranden med hjälp av formeln $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ tillsammans med $$$\alpha=x$$$ och $$$\beta=2 x$$$:

$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = - \sin{\left(x \right)} + \sin{\left(3 x \right)}$$$:

$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$

Integrera termvis:

$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(x \right)} + \sin{\left(3 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(x \right)} d x} + \int{\sin{\left(3 x \right)} d x}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{\sin{\left(3 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{\int{\sin{\left(3 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$

Låt $$$u=3 x$$$ vara.

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{3}$$$.

Alltså,

$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{3}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{4} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{12} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{12}$$

Kom ihåg att $$$u=3 x$$$:

$$\frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{12} = \frac{\cos{\left(x \right)}}{4} + \frac{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{12}$$

Skriv om integranden med hjälp av formeln $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ tillsammans med $$$\alpha=3 x$$$ och $$$\beta=2 x$$$:

$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{2} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}}{2}$$

Integrera termvis:

$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{4} = \frac{\cos{\left(x \right)}}{4} - \frac{\cos{\left(3 x \right)}}{12} + \frac{\int{\sin{\left(5 x \right)} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{4}$$

Låt $$$u=5 x$$$ vara.

$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{5}$$$.

Integralen blir

$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{4} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{5}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{4} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{20} = - \frac{\cos{\left(3 x \right)}}{12} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{20}$$

Kom ihåg att $$$u=5 x$$$:

$$- \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left({\color{red}{u}} \right)}}{20} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$

Alltså,

$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}$$

Lägg till integrationskonstanten:

$$\int{\sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}+C$$

Svar

$$$\int \sin{\left(2 x \right)} \cos{\left(x \right)} \cos{\left(2 x \right)}\, dx = \left(- \frac{\cos{\left(3 x \right)}}{12} - \frac{\cos{\left(5 x \right)}}{20}\right) + C$$$A


Please try a new game Rotatly