Intégrale de $$$\sec^{3}{\left(\theta \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sec^{3}{\left(\theta \right)}\, d\theta$$$.
Solution
Pour l’intégrale $$$\int{\sec^{3}{\left(\theta \right)} d \theta}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\sec{\left(\theta \right)}$$$ et $$$\operatorname{dv}=\sec^{2}{\left(\theta \right)} d\theta$$$.
Donc $$$\operatorname{du}=\left(\sec{\left(\theta \right)}\right)^{\prime }d\theta=\tan{\left(\theta \right)} \sec{\left(\theta \right)} d\theta$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\sec^{2}{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)}$$$ (les étapes peuvent être consultées »).
L’intégrale devient
$$\int{\sec^{3}{\left(\theta \right)} d \theta}=\sec{\left(\theta \right)} \cdot \tan{\left(\theta \right)}-\int{\tan{\left(\theta \right)} \cdot \tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\tan^{2}{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}$$
Appliquez la formule $$$\tan^{2}{\left(\theta \right)} = \sec^{2}{\left(\theta \right)} - 1$$$ :
$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\tan^{2}{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{2}{\left(\theta \right)} - 1\right) \sec{\left(\theta \right)} d \theta}$$
Développer :
$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{2}{\left(\theta \right)} - 1\right) \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{3}{\left(\theta \right)} - \sec{\left(\theta \right)}\right)d \theta}$$
L’intégrale d’une différence est la différence des intégrales :
$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{3}{\left(\theta \right)} - \sec{\left(\theta \right)}\right)d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} + \int{\sec{\left(\theta \right)} d \theta} - \int{\sec^{3}{\left(\theta \right)} d \theta}$$
Ainsi, nous obtenons l’équation linéaire simple suivante par rapport à l’intégrale :
$${\color{red}{\int{\sec^{3}{\left(\theta \right)} d \theta}}}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} + \int{\sec{\left(\theta \right)} d \theta} - {\color{red}{\int{\sec^{3}{\left(\theta \right)} d \theta}}}$$
En le résolvant, on obtient que
$$\int{\sec^{3}{\left(\theta \right)} d \theta}=\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{\int{\sec{\left(\theta \right)} d \theta}}{2}$$
Réécrivez la sécante sous la forme $$$\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$$$:
$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sec{\left(\theta \right)} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}}}{2}$$
Réécrivez le cosinus en fonction du sinus à l’aide de la formule $$$\cos\left(\theta\right)=\sin\left(\theta + \frac{\pi}{2}\right)$$$, puis réécrivez le sinus à l’aide de la formule de l’angle double $$$\sin\left(\theta\right)=2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$$$:
$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2}$$
Multipliez le numérateur et le dénominateur par $$$\sec^2\left(\frac{\theta}{2} + \frac{\pi}{4} \right)$$$:
$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2}$$
Soit $$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$.
Alors $$$du=\left(\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}\right)^{\prime }d\theta = \frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2} d\theta$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} d\theta = 2 du$$$.
L’intégrale devient
$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Rappelons que $$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$ :
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}$$
Par conséquent,
$$\int{\sec^{3}{\left(\theta \right)} d \theta} = \frac{\ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\sec^{3}{\left(\theta \right)} d \theta} = \frac{\ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}+C$$
Réponse
$$$\int \sec^{3}{\left(\theta \right)}\, d\theta = \left(\frac{\ln\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right|\right)}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}\right) + C$$$A