Intégrale de $$$\operatorname{acosh}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \operatorname{acosh}{\left(x \right)}\, dx$$$.
Solution
Pour l’intégrale $$$\int{\operatorname{acosh}{\left(x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\operatorname{acosh}{\left(x \right)}$$$ et $$$\operatorname{dv}=dx$$$.
Donc $$$\operatorname{du}=\left(\operatorname{acosh}{\left(x \right)}\right)^{\prime }dx=\frac{1}{\sqrt{x - 1} \sqrt{x + 1}} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d x}=x$$$ (les étapes peuvent être consultées »).
Par conséquent,
$${\color{red}{\int{\operatorname{acosh}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{acosh}{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{\sqrt{x - 1} \sqrt{x + 1}} d x}\right)}}={\color{red}{\left(x \operatorname{acosh}{\left(x \right)} - \int{\frac{x}{\sqrt{x^{2} - 1}} d x}\right)}}$$
Soit $$$u=x^{2} - 1$$$.
Alors $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.
Ainsi,
$$x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{x}{\sqrt{x^{2} - 1}} d x}}} = x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$ :
$$x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}} = x \operatorname{acosh}{\left(x \right)} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=- \frac{1}{2}$$$ :
$$x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$
Rappelons que $$$u=x^{2} - 1$$$ :
$$x \operatorname{acosh}{\left(x \right)} - \sqrt{{\color{red}{u}}} = x \operatorname{acosh}{\left(x \right)} - \sqrt{{\color{red}{\left(x^{2} - 1\right)}}}$$
Par conséquent,
$$\int{\operatorname{acosh}{\left(x \right)} d x} = x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}$$
Ajouter la constante d'intégration :
$$\int{\operatorname{acosh}{\left(x \right)} d x} = x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}+C$$
Réponse
$$$\int \operatorname{acosh}{\left(x \right)}\, dx = \left(x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}\right) + C$$$A