Ολοκλήρωμα του $$$\operatorname{acosh}{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\operatorname{acosh}{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \operatorname{acosh}{\left(x \right)}\, dx$$$.

Λύση

Για το ολοκλήρωμα $$$\int{\operatorname{acosh}{\left(x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\operatorname{acosh}{\left(x \right)}$$$ και $$$\operatorname{dv}=dx$$$.

Τότε $$$\operatorname{du}=\left(\operatorname{acosh}{\left(x \right)}\right)^{\prime }dx=\frac{1}{\sqrt{x - 1} \sqrt{x + 1}} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{1 d x}=x$$$ (τα βήματα φαίνονται »).

Επομένως,

$${\color{red}{\int{\operatorname{acosh}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{acosh}{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{\sqrt{x - 1} \sqrt{x + 1}} d x}\right)}}={\color{red}{\left(x \operatorname{acosh}{\left(x \right)} - \int{\frac{x}{\sqrt{x^{2} - 1}} d x}\right)}}$$

Έστω $$$u=x^{2} - 1$$$.

Τότε $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$x dx = \frac{du}{2}$$$.

Επομένως,

$$x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{x}{\sqrt{x^{2} - 1}} d x}}} = x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:

$$x \operatorname{acosh}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}} = x \operatorname{acosh}{\left(x \right)} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=- \frac{1}{2}$$$:

$$x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=x \operatorname{acosh}{\left(x \right)} - \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

Θυμηθείτε ότι $$$u=x^{2} - 1$$$:

$$x \operatorname{acosh}{\left(x \right)} - \sqrt{{\color{red}{u}}} = x \operatorname{acosh}{\left(x \right)} - \sqrt{{\color{red}{\left(x^{2} - 1\right)}}}$$

Επομένως,

$$\int{\operatorname{acosh}{\left(x \right)} d x} = x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\operatorname{acosh}{\left(x \right)} d x} = x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}+C$$

Απάντηση

$$$\int \operatorname{acosh}{\left(x \right)}\, dx = \left(x \operatorname{acosh}{\left(x \right)} - \sqrt{x^{2} - 1}\right) + C$$$A


Please try a new game Rotatly