Intégrale de $$$\cos{\left(3 x \right)} \cos{\left(5 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(3 x \right)} \cos{\left(5 x \right)}\, dx$$$.
Solution
Réécrivez l’intégrande à l’aide de la formule $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=3 x$$$ et $$$\beta=5 x$$$:
$${\color{red}{\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \cos{\left(2 x \right)} + \cos{\left(8 x \right)}$$$ :
$${\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + \cos{\left(8 x \right)}\right)d x}}{2}\right)}}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + \cos{\left(8 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(2 x \right)} d x} + \int{\cos{\left(8 x \right)} d x}\right)}}}{2}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Rappelons que $$$u=2 x$$$ :
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Soit $$$u=8 x$$$.
Alors $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{8}$$$.
Ainsi,
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$
Rappelons que $$$u=8 x$$$ :
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{16} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{16}$$
Par conséquent,
$$\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}+C$$
Réponse
$$$\int \cos{\left(3 x \right)} \cos{\left(5 x \right)}\, dx = \left(\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}\right) + C$$$A