Integrale di $$$\cos{\left(3 x \right)} \cos{\left(5 x \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \cos{\left(3 x \right)} \cos{\left(5 x \right)}\, dx$$$.
Soluzione
Riscrivi l’integrando utilizzando la formula $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ con $$$\alpha=3 x$$$ e $$$\beta=5 x$$$:
$${\color{red}{\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \cos{\left(2 x \right)} + \cos{\left(8 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + \cos{\left(8 x \right)}\right)d x}}{2}\right)}}$$
Integra termine per termine:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + \cos{\left(8 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(2 x \right)} d x} + \int{\cos{\left(8 x \right)} d x}\right)}}}{2}$$
Sia $$$u=2 x$$$.
Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.
Quindi,
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Ricordiamo che $$$u=2 x$$$:
$$\frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\int{\cos{\left(8 x \right)} d x}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Sia $$$u=8 x$$$.
Quindi $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{8}$$$.
L'integrale può essere riscritto come
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{8}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{2} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$
Ricordiamo che $$$u=8 x$$$:
$$\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{16} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{16}$$
Pertanto,
$$\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}$$
Aggiungi la costante di integrazione:
$$\int{\cos{\left(3 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}+C$$
Risposta
$$$\int \cos{\left(3 x \right)} \cos{\left(5 x \right)}\, dx = \left(\frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(8 x \right)}}{16}\right) + C$$$A