Intégrale de $$$\sqrt{1 - x^{2}}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\sqrt{1 - x^{2}}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \sqrt{1 - x^{2}}\, dx$$$.

Solution

Soit $$$x=\sin{\left(u \right)}$$$.

Alors $$$dx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (les étapes peuvent être vues »).

De plus, il s'ensuit que $$$u=\operatorname{asin}{\left(x \right)}$$$.

Donc,

$$$\sqrt{1 - x^{2}} = \sqrt{1 - \sin^{2}{\left( u \right)}}$$$

Utilisez l'identité $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ :

$$$\sqrt{1 - \sin^{2}{\left( u \right)}}=\sqrt{\cos^{2}{\left( u \right)}}$$$

En supposant que $$$\cos{\left( u \right)} \ge 0$$$, nous obtenons ce qui suit :

$$$\sqrt{\cos^{2}{\left( u \right)}} = \cos{\left( u \right)}$$$

Ainsi,

$${\color{red}{\int{\sqrt{1 - x^{2}} d x}}} = {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}$$

Appliquer la formule de réduction de puissance $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ avec $$$\alpha= u $$$:

$${\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ :

$${\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}$$

Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:

$$\frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{u}}}{2}$$

Soit $$$v=2 u$$$.

Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.

L’intégrale devient

$$\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$

Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :

$$\frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$

L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :

$$\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{u}{2} + \frac{{\color{red}{\sin{\left(v \right)}}}}{4}$$

Rappelons que $$$v=2 u$$$ :

$$\frac{u}{2} + \frac{\sin{\left({\color{red}{v}} \right)}}{4} = \frac{u}{2} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

Rappelons que $$$u=\operatorname{asin}{\left(x \right)}$$$ :

$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{{\color{red}{u}}}{2} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}}{4} + \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}$$

Par conséquent,

$$\int{\sqrt{1 - x^{2}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(x \right)} \right)}}{4} + \frac{\operatorname{asin}{\left(x \right)}}{2}$$

En utilisant les formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifiez l'expression :

$$\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}$$

Ajouter la constante d'intégration :

$$\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}+C$$

Réponse

$$$\int \sqrt{1 - x^{2}}\, dx = \left(\frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly