Calculatrice d’intégrales définies et impropres
Calculez des intégrales définies et impropres étape par étape
La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.
Solution
Your input: calculate $$$\int_{e o r z}^{e n o}\left( -1 \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(-1\right)d x}=- x$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- x\right)|_{\left(x=e n o\right)}=- e n o$$$
$$$\left(- x\right)|_{\left(x=e o r z\right)}=- e o r z$$$
$$$\int_{e o r z}^{e n o}\left( -1 \right)dx=\left(- x\right)|_{\left(x=e n o\right)}-\left(- x\right)|_{\left(x=e o r z\right)}=- e n o + e o r z$$$
Answer: $$$\int_{e o r z}^{e n o}\left( -1 \right)dx=- e n o + e o r z$$$