Calculatrice d’intégrales définies et impropres

Calculez des intégrales définies et impropres étape par étape

La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{11}^{12}\left( x^{2} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{x^{3}}{3}\right)|_{\left(x=12\right)}=576$$$

$$$\left(\frac{x^{3}}{3}\right)|_{\left(x=11\right)}=\frac{1331}{3}$$$

$$$\int_{11}^{12}\left( x^{2} \right)dx=\left(\frac{x^{3}}{3}\right)|_{\left(x=12\right)}-\left(\frac{x^{3}}{3}\right)|_{\left(x=11\right)}=\frac{397}{3}$$$

Answer: $$$\int_{11}^{12}\left( x^{2} \right)dx=\frac{397}{3}\approx 132.333333333333$$$


Please try a new game Rotatly