Calculatrice d’intégrales définies et impropres
Calculez des intégrales définies et impropres étape par étape
La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.
Solution
Your input: calculate $$$\int_{0}^{\pi}\left( \sin^{2}{\left(x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\sin^{2}{\left(x \right)} d x}=\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}\right)|_{\left(x=\pi\right)}=\frac{\pi}{2}$$$
$$$\left(\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{\pi}\left( \sin^{2}{\left(x \right)} \right)dx=\left(\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}\right)|_{\left(x=\pi\right)}-\left(\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}\right)|_{\left(x=0\right)}=\frac{\pi}{2}$$$
Answer: $$$\int_{0}^{\pi}\left( \sin^{2}{\left(x \right)} \right)dx=\frac{\pi}{2}\approx 1.5707963267949$$$