Calculatrice d’intégrales définies et impropres

Calculez des intégrales définies et impropres étape par étape

La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\frac{x \sin{\left(3 \right)}}{2} d x}=\frac{x^{2} \sin{\left(3 \right)}}{4}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=\frac{\pi}{2}\right)}=\frac{\pi^{2} \sin{\left(3 \right)}}{16}$$$

$$$\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx=\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=\frac{\pi}{2}\right)}-\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=0\right)}=\frac{\pi^{2} \sin{\left(3 \right)}}{16}$$$

Answer: $$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx=\frac{\pi^{2} \sin{\left(3 \right)}}{16}\approx 0.0870499157893395$$$


Please try a new game Rotatly