Calculatrice d’intégrales définies et impropres
Calculez des intégrales définies et impropres étape par étape
La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.
Solution
Your input: calculate $$$\int_{0}^{2 \pi}\left( \theta \sin{\left(2 \right)} \right)d\theta$$$
First, calculate the corresponding indefinite integral: $$$\int{\theta \sin{\left(2 \right)} d \theta}=\frac{\theta^{2} \sin{\left(2 \right)}}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{\theta^{2} \sin{\left(2 \right)}}{2}\right)|_{\left(\theta=2 \pi\right)}=2 \pi^{2} \sin{\left(2 \right)}$$$
$$$\left(\frac{\theta^{2} \sin{\left(2 \right)}}{2}\right)|_{\left(\theta=0\right)}=0$$$
$$$\int_{0}^{2 \pi}\left( \theta \sin{\left(2 \right)} \right)d\theta=\left(\frac{\theta^{2} \sin{\left(2 \right)}}{2}\right)|_{\left(\theta=2 \pi\right)}-\left(\frac{\theta^{2} \sin{\left(2 \right)}}{2}\right)|_{\left(\theta=0\right)}=2 \pi^{2} \sin{\left(2 \right)}$$$
Answer: $$$\int_{0}^{2 \pi}\left( \theta \sin{\left(2 \right)} \right)d\theta=2 \pi^{2} \sin{\left(2 \right)}\approx 17.948811771396$$$