Calculatrice d’intégrales définies et impropres
Calculez des intégrales définies et impropres étape par étape
La calculatrice essaiera d'évaluer l'intégrale définie (c.-à-d. avec bornes), y compris les intégrales impropres, en affichant les étapes.
Solution
Your input: calculate $$$\int_{-15}^{15}\left( x^{2} - 3 x \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(x^{2} - 3 x\right)d x}=\frac{x^{2} \left(2 x - 9\right)}{6}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{2} \left(2 x - 9\right)}{6}\right)|_{\left(x=15\right)}=\frac{1575}{2}$$$
$$$\left(\frac{x^{2} \left(2 x - 9\right)}{6}\right)|_{\left(x=-15\right)}=- \frac{2925}{2}$$$
$$$\int_{-15}^{15}\left( x^{2} - 3 x \right)dx=\left(\frac{x^{2} \left(2 x - 9\right)}{6}\right)|_{\left(x=15\right)}-\left(\frac{x^{2} \left(2 x - 9\right)}{6}\right)|_{\left(x=-15\right)}=2250$$$
Answer: $$$\int_{-15}^{15}\left( x^{2} - 3 x \right)dx=2250$$$