Identifiez la section conique $$$\frac{17376 y^{2}}{25} = \frac{7}{2}$$$
Calculatrices associées: Calculatrice de parabole, Calculatrice de cercle, Calculatrice d'ellipse, Calculatrice d'hyperbole
Votre saisie
Identifiez et déterminez les propriétés de la section conique $$$\frac{17376 y^{2}}{25} = \frac{7}{2}$$$.
Solution
L'équation générale d'une section conique est $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Dans notre cas, $$$A = 0$$$, $$$B = 0$$$, $$$C = \frac{17376}{25}$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \frac{7}{2}$$$.
Le discriminant de la section conique est $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Ensuite, $$$B^{2} - 4 A C = 0$$$.
Puisque $$$\Delta = 0$$$, il s’agit d’une section conique dégénérée.
Puisque $$$B^{2} - 4 A C = 0$$$, l'équation représente deux droites parallèles.
Réponse
$$$\frac{17376 y^{2}}{25} = \frac{7}{2}$$$A représente la paire de droites $$$y = - \frac{5 \sqrt{3801}}{4344}$$$, $$$y = \frac{5 \sqrt{3801}}{4344}$$$A.
Forme générale : $$$\frac{17376 y^{2}}{25} - \frac{7}{2} = 0$$$A.
Forme factorisée : $$$\left(4344 y - 5 \sqrt{3801}\right) \left(4344 y + 5 \sqrt{3801}\right) = 0$$$A.
Graphique : voir la calculatrice graphique.