$$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$:n QR-hajotelma
Aiheeseen liittyvä laskin: LU-hajotelmalaskin
Syötteesi
Määritä matriisille $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$ QR-hajotelma.
Ratkaisu
Ortonormalisoi annetun matriisin sarakkeiden muodostama vektorijoukko: $$$\left\{\left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\right\}$$$ (vaiheet: ks. Gram–Schmidt-laskin).
Matriisin $$$Q$$$ sarakkeet ovat ortonormeeratut vektorit: $$$Q = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$.
Laske matriisin transpoosi: $$$Q^{T} = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$ (vaiheet: katso matriisin transpoosilaskin).
Lopuksi $$$R = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right] = \left[\begin{array}{c}- \frac{a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{2} e^{2 e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$ (vaiheista ks. matriisikertolaskin).
Vastaus
$$$Q = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$A
$$$R = \left[\begin{array}{c}- \frac{a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{2} e^{2 e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$A