$$$\left[\begin{array}{cc}2 t^{2} & - t^{2}\\- t^{2} & t^{2}\end{array}\right]$$$:n ominaisarvot ja ominaisvektorit

Laskin laskee neliömäisen $$$2$$$x$$$2$$$-matriisin $$$\left[\begin{array}{cc}2 t^{2} & - t^{2}\\- t^{2} & t^{2}\end{array}\right]$$$ ominaisarvot ja ominaisvektorit ja näyttää välivaiheet.

Aiheeseen liittyvä laskin: Ominaispolynomilaskin

A

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä matriisin $$$\left[\begin{array}{cc}2 t^{2} & - t^{2}\\- t^{2} & t^{2}\end{array}\right]$$$ ominaisarvot ja ominaisvektorit.

Ratkaisu

Aloita muodostamalla uusi matriisi vähentämällä annetun matriisin diagonaalialkioista $$$\lambda$$$: $$$\left[\begin{array}{cc}- \lambda + 2 t^{2} & - t^{2}\\- t^{2} & - \lambda + t^{2}\end{array}\right]$$$.

Saadun matriisin determinantti on $$$\lambda^{2} - 3 \lambda t^{2} + t^{4}$$$ (vaiheista, katso determinanttilaskin).

Ratkaise yhtälö $$$\lambda^{2} - 3 \lambda t^{2} + t^{4} = 0$$$.

Juuret ovat $$$\lambda_{1} = \frac{t^{2} \left(3 - \sqrt{5}\right)}{2}$$$, $$$\lambda_{2} = \frac{t^{2} \left(\sqrt{5} + 3\right)}{2}$$$ (ratkaisuvaiheista katso yhtälönratkaisija).

Nämä ovat ominaisarvot.

Seuraavaksi etsi ominaisvektorit.

  • $$$\lambda = \frac{t^{2} \left(3 - \sqrt{5}\right)}{2}$$$

    $$$\left[\begin{array}{cc}- \lambda + 2 t^{2} & - t^{2}\\- t^{2} & - \lambda + t^{2}\end{array}\right] = \left[\begin{array}{cc}- \frac{t^{2} \left(3 - \sqrt{5}\right)}{2} + 2 t^{2} & - t^{2}\\- t^{2} & - \frac{t^{2} \left(3 - \sqrt{5}\right)}{2} + t^{2}\end{array}\right]$$$

    Tämän matriisin nollatila on $$$\left\{\left[\begin{array}{c}\frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (vaiheet: katso nollatilan laskin).

    Tämä on ominaisvektori.

  • $$$\lambda = \frac{t^{2} \left(\sqrt{5} + 3\right)}{2}$$$

    $$$\left[\begin{array}{cc}- \lambda + 2 t^{2} & - t^{2}\\- t^{2} & - \lambda + t^{2}\end{array}\right] = \left[\begin{array}{cc}- \frac{t^{2} \left(\sqrt{5} + 3\right)}{2} + 2 t^{2} & - t^{2}\\- t^{2} & - \frac{t^{2} \left(\sqrt{5} + 3\right)}{2} + t^{2}\end{array}\right]$$$

    Tämän matriisin nollatila on $$$\left\{\left[\begin{array}{c}- \frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (vaiheet: katso nollatilan laskin).

    Tämä on ominaisvektori.

Vastaus

Ominaisarvo: $$$\frac{t^{2} \left(3 - \sqrt{5}\right)}{2}\approx 0.381966011250105 t^{2}$$$A, kertaluku: $$$1$$$A, ominaisvektori: $$$\left[\begin{array}{c}\frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}0.618033988749895\\1\end{array}\right]$$$A.

Ominaisarvo: $$$\frac{t^{2} \left(\sqrt{5} + 3\right)}{2}\approx 2.618033988749895 t^{2}$$$A, kertaluku: $$$1$$$A, ominaisvektori: $$$\left[\begin{array}{c}- \frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}-1.618033988749895\\1\end{array}\right]$$$A.


Please try a new game Rotatly