Funktion $$$t e^{t}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int t e^{t}\, dt$$$.
Ratkaisu
Integraalin $$$\int{t e^{t} d t}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=t$$$ ja $$$\operatorname{dv}=e^{t} dt$$$.
Tällöin $$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{t e^{t} d t}}}={\color{red}{\left(t \cdot e^{t}-\int{e^{t} \cdot 1 d t}\right)}}={\color{red}{\left(t e^{t} - \int{e^{t} d t}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{t} d t} = e^{t}$$$:
$$t e^{t} - {\color{red}{\int{e^{t} d t}}} = t e^{t} - {\color{red}{e^{t}}}$$
Näin ollen,
$$\int{t e^{t} d t} = t e^{t} - e^{t}$$
Sievennä:
$$\int{t e^{t} d t} = \left(t - 1\right) e^{t}$$
Lisää integrointivakio:
$$\int{t e^{t} d t} = \left(t - 1\right) e^{t}+C$$
Vastaus
$$$\int t e^{t}\, dt = \left(t - 1\right) e^{t} + C$$$A