Funktion $$$\frac{\tan{\left(x \right)}}{4}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\tan{\left(x \right)}}{4}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(x \right)} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\tan{\left(x \right)} d x}}{4}\right)}}$$
Kirjoita tangentti uudelleen muotoon $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$$\frac{{\color{red}{\int{\tan{\left(x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{4}$$
Olkoon $$$u=\cos{\left(x \right)}$$$.
Tällöin $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sin{\left(x \right)} dx = - du$$$.
Näin ollen,
$$\frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{4} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{4}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{4} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{4}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4}$$
Muista, että $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{4}$$
Näin ollen,
$$\int{\frac{\tan{\left(x \right)}}{4} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{4}$$
Lisää integrointivakio:
$$\int{\frac{\tan{\left(x \right)}}{4} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{4}+C$$
Vastaus
$$$\int \frac{\tan{\left(x \right)}}{4}\, dx = - \frac{\ln\left(\left|{\cos{\left(x \right)}}\right|\right)}{4} + C$$$A