Funktion $$$\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}$$$ integraali

Laskin löytää funktion $$$\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx$$$.

Ratkaisu

Sovella potenssin alentamiskaavaa $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ käyttäen $$$\alpha=x$$$:

$${\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3}$$$:

$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2}$$

Integroi termi kerrallaan:

$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x} + \int{\frac{\sin{\left(x \right)}}{3} d x}\right)}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{2} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{2}$$

Sinifunktion integraali on $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{6} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{6}$$

Kirjoita $$$\sin\left(x \right)\cos\left(2 x \right)$$$ uudelleen kaavaa $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ käyttäen, kun $$$\alpha=x$$$ ja $$$\beta=2 x$$$:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = - \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}$$$:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}{2}\right)}}}{2}$$

Integroi termi kerrallaan:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(x \right)}}{3} d x} + \int{\frac{\sin{\left(3 x \right)}}{3} d x}\right)}}}{4}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{4}$$

Sinifunktion integraali on $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{12}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(3 x \right)} d x}}{3}\right)}}}{4}$$

Olkoon $$$u=3 x$$$.

Tällöin $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{3}$$$.

Näin ollen,

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{12}$$

Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{36} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{36}$$

Muista, että $$$u=3 x$$$:

$$- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{u}} \right)}}{36} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{36}$$

Näin ollen,

$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}$$

Lisää integrointivakio:

$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}+C$$

Vastaus

$$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx = \left(- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}\right) + C$$$A


Please try a new game Rotatly