Funktion $$$\sin{\left(t^{2} \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin{\left(t^{2} \right)}\, dt$$$.
Ratkaisu
Tällä integraalilla (Fresnelin sini-integraali) ei ole suljettua muotoa:
$${\color{red}{\int{\sin{\left(t^{2} \right)} d t}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} t}{\sqrt{\pi}}\right)}{2}\right)}}$$
Näin ollen,
$$\int{\sin{\left(t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} t}{\sqrt{\pi}}\right)}{2}$$
Lisää integrointivakio:
$$\int{\sin{\left(t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} t}{\sqrt{\pi}}\right)}{2}+C$$
Vastaus
$$$\int \sin{\left(t^{2} \right)}\, dt = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} t}{\sqrt{\pi}}\right)}{2} + C$$$A