Funktion $$$\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}$$$ integraali

Laskin löytää funktion $$$\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{\pi}{2}$$$ ja $$$f{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}$$$:

$${\color{red}{\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x}}} = {\color{red}{\left(\frac{\pi \int{\frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}{2}\right)}}$$

Olkoon $$$u=\sin{\left(x \right)}$$$.

Tällöin $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\cos{\left(x \right)} dx = du$$$.

Integraali muuttuu muotoon

$$\frac{\pi {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}}}{2} = \frac{\pi {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{1}{2}$$$:

$$\frac{\pi {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{\pi {\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{\pi {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{\pi {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{\pi {\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

Muista, että $$$u=\sin{\left(x \right)}$$$:

$$\pi \sqrt{{\color{red}{u}}} = \pi \sqrt{{\color{red}{\sin{\left(x \right)}}}}$$

Näin ollen,

$$\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x} = \pi \sqrt{\sin{\left(x \right)}}$$

Lisää integrointivakio:

$$\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x} = \pi \sqrt{\sin{\left(x \right)}}+C$$

Vastaus

$$$\int \frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}\, dx = \pi \sqrt{\sin{\left(x \right)}} + C$$$A


Please try a new game Rotatly