Funktion $$$e^{4 u}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int e^{4 u}\, du$$$.
Ratkaisu
Olkoon $$$v=4 u$$$.
Tällöin $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = \frac{dv}{4}$$$.
Näin ollen,
$${\color{red}{\int{e^{4 u} d u}}} = {\color{red}{\int{\frac{e^{v}}{4} d v}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(v \right)} = e^{v}$$$:
$${\color{red}{\int{\frac{e^{v}}{4} d v}}} = {\color{red}{\left(\frac{\int{e^{v} d v}}{4}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{v} d v} = e^{v}$$$:
$$\frac{{\color{red}{\int{e^{v} d v}}}}{4} = \frac{{\color{red}{e^{v}}}}{4}$$
Muista, että $$$v=4 u$$$:
$$\frac{e^{{\color{red}{v}}}}{4} = \frac{e^{{\color{red}{\left(4 u\right)}}}}{4}$$
Näin ollen,
$$\int{e^{4 u} d u} = \frac{e^{4 u}}{4}$$
Lisää integrointivakio:
$$\int{e^{4 u} d u} = \frac{e^{4 u}}{4}+C$$
Vastaus
$$$\int e^{4 u}\, du = \frac{e^{4 u}}{4} + C$$$A