Funktion $$$\frac{1}{x \ln^{9}\left(x\right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=\ln{\left(x \right)}$$$.
Tällöin $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x} = du$$$.
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x}}} = {\color{red}{\int{\frac{1}{u^{9}} d u}}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-9$$$:
$${\color{red}{\int{\frac{1}{u^{9}} d u}}}={\color{red}{\int{u^{-9} d u}}}={\color{red}{\frac{u^{-9 + 1}}{-9 + 1}}}={\color{red}{\left(- \frac{u^{-8}}{8}\right)}}={\color{red}{\left(- \frac{1}{8 u^{8}}\right)}}$$
Muista, että $$$u=\ln{\left(x \right)}$$$:
$$- \frac{{\color{red}{u}}^{-8}}{8} = - \frac{{\color{red}{\ln{\left(x \right)}}}^{-8}}{8}$$
Näin ollen,
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}$$
Lisää integrointivakio:
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}+C$$
Vastaus
$$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx = - \frac{1}{8 \ln^{8}\left(x\right)} + C$$$A