Funktion $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ integraali

Laskin löytää funktion $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=\ln{\left(x \right)}$$$.

Tällöin $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{x} = du$$$.

Integraali muuttuu muotoon

$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d x}}} = {\color{red}{\int{\frac{1}{u^{3}} d u}}}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-3$$$:

$${\color{red}{\int{\frac{1}{u^{3}} d u}}}={\color{red}{\int{u^{-3} d u}}}={\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{u^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

Muista, että $$$u=\ln{\left(x \right)}$$$:

$$- \frac{{\color{red}{u}}^{-2}}{2} = - \frac{{\color{red}{\ln{\left(x \right)}}}^{-2}}{2}$$

Näin ollen,

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d x} = - \frac{1}{2 \ln{\left(x \right)}^{2}}$$

Lisää integrointivakio:

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d x} = - \frac{1}{2 \ln{\left(x \right)}^{2}}+C$$

Vastaus

$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dx = - \frac{1}{2 \ln^{2}\left(x\right)} + C$$$A


Please try a new game Rotatly