Funktion $$$\frac{\sqrt{1 - x}}{x}$$$ integraali

Laskin löytää funktion $$$\frac{\sqrt{1 - x}}{x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\sqrt{1 - x}}{x}\, dx$$$.

Ratkaisu

Olkoon $$$u=\sqrt{1 - x}$$$.

Tällöin $$$du=\left(\sqrt{1 - x}\right)^{\prime }dx = - \frac{1}{2 \sqrt{1 - x}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{\sqrt{1 - x}} = - 2 du$$$.

Näin ollen,

$${\color{red}{\int{\frac{\sqrt{1 - x}}{x} d x}}} = {\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-2$$$ ja $$$f{\left(u \right)} = \frac{u^{2}}{1 - u^{2}}$$$:

$${\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- 2 \int{\frac{u^{2}}{1 - u^{2}} d u}\right)}}$$

Koska osoittajan aste ei ole pienempi kuin nimittäjän aste, suorita polynomien jakokulma (vaiheet voidaan nähdä »):

$$- 2 {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = - 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$

Integroi termi kerrallaan:

$$- 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = - 2 {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$- 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{u}}$$

Suorita osamurtokehittely (vaiheet voidaan nähdä kohdassa »):

$$2 u - 2 {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = 2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$

Integroi termi kerrallaan:

$$2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = 2 u - 2 {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \frac{1}{u + 1}$$$:

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$

Olkoon $$$v=u + 1$$$.

Tällöin $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = dv$$$.

Näin ollen,

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{u + 1} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Muista, että $$$v=u + 1$$$:

$$2 u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} = 2 u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \frac{1}{u - 1}$$$:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$

Olkoon $$$v=u - 1$$$.

Tällöin $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = dv$$$.

Siis,

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Muista, että $$$v=u - 1$$$:

$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}$$

Muista, että $$$u=\sqrt{1 - x}$$$:

$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + 2 {\color{red}{u}} = \ln{\left(\left|{-1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} + 2 {\color{red}{\sqrt{1 - x}}}$$

Näin ollen,

$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}$$

Lisää integrointivakio:

$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}+C$$

Vastaus

$$$\int \frac{\sqrt{1 - x}}{x}\, dx = \left(2 \sqrt{1 - x} + \ln\left(\left|{\sqrt{1 - x} - 1}\right|\right) - \ln\left(\left|{\sqrt{1 - x} + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly