Integraali $$$y \sin{\left(x y \right)}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int y \sin{\left(x y \right)}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=y$$$ ja $$$f{\left(x \right)} = \sin{\left(x y \right)}$$$:
$${\color{red}{\int{y \sin{\left(x y \right)} d x}}} = {\color{red}{y \int{\sin{\left(x y \right)} d x}}}$$
Olkoon $$$u=x y$$$.
Tällöin $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{y}$$$.
Integraali muuttuu muotoon
$$y {\color{red}{\int{\sin{\left(x y \right)} d x}}} = y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{y}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$y {\color{red}{\int{\frac{\sin{\left(u \right)}}{y} d u}}} = y {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{y}}}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Muista, että $$$u=x y$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{x y}} \right)}$$
Näin ollen,
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}$$
Lisää integrointivakio:
$$\int{y \sin{\left(x y \right)} d x} = - \cos{\left(x y \right)}+C$$
Vastaus
$$$\int y \sin{\left(x y \right)}\, dx = - \cos{\left(x y \right)} + C$$$A