Funktion $$$x \cos{\left(2 x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int x \cos{\left(2 x \right)}\, dx$$$.
Ratkaisu
Integraalin $$$\int{x \cos{\left(2 x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=x$$$ ja $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.
Tällöin $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{x \cos{\left(2 x \right)} d x}}}={\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}} = \frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}$$
Olkoon $$$u=2 x$$$.
Tällöin $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{2}$$$.
Näin ollen,
$$\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = \frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Muista, että $$$u=2 x$$$:
$$\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Näin ollen,
$$\int{x \cos{\left(2 x \right)} d x} = \frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}$$
Lisää integrointivakio:
$$\int{x \cos{\left(2 x \right)} d x} = \frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}+C$$
Vastaus
$$$\int x \cos{\left(2 x \right)}\, dx = \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}\right) + C$$$A