Funktion $$$\frac{x^{3}}{x^{2} - 9}$$$ integraali

Laskin löytää funktion $$$\frac{x^{3}}{x^{2} - 9}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{x^{3}}{x^{2} - 9}\, dx$$$.

Ratkaisu

Koska osoittajan aste ei ole pienempi kuin nimittäjän aste, suorita polynomien jakokulma (vaiheet voidaan nähdä »):

$${\color{red}{\int{\frac{x^{3}}{x^{2} - 9} d x}}} = {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}} = {\color{red}{\left(\int{x d x} + \int{\frac{9 x}{x^{2} - 9} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\int{\frac{9 x}{x^{2} - 9} d x} + {\color{red}{\int{x d x}}}=\int{\frac{9 x}{x^{2} - 9} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{9 x}{x^{2} - 9} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Olkoon $$$u=x^{2} - 9$$$.

Tällöin $$$du=\left(x^{2} - 9\right)^{\prime }dx = 2 x dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$x dx = \frac{du}{2}$$$.

Näin ollen,

$$\frac{x^{2}}{2} + {\color{red}{\int{\frac{9 x}{x^{2} - 9} d x}}} = \frac{x^{2}}{2} + {\color{red}{\int{\frac{9}{2 u} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{9}{2}$$$ ja $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{x^{2}}{2} + {\color{red}{\int{\frac{9}{2 u} d u}}} = \frac{x^{2}}{2} + {\color{red}{\left(\frac{9 \int{\frac{1}{u} d u}}{2}\right)}}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x^{2}}{2} + \frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{x^{2}}{2} + \frac{9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Muista, että $$$u=x^{2} - 9$$$:

$$\frac{x^{2}}{2} + \frac{9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{x^{2}}{2} + \frac{9 \ln{\left(\left|{{\color{red}{\left(x^{2} - 9\right)}}}\right| \right)}}{2}$$

Näin ollen,

$$\int{\frac{x^{3}}{x^{2} - 9} d x} = \frac{x^{2}}{2} + \frac{9 \ln{\left(\left|{x^{2} - 9}\right| \right)}}{2}$$

Lisää integrointivakio:

$$\int{\frac{x^{3}}{x^{2} - 9} d x} = \frac{x^{2}}{2} + \frac{9 \ln{\left(\left|{x^{2} - 9}\right| \right)}}{2}+C$$

Vastaus

$$$\int \frac{x^{3}}{x^{2} - 9}\, dx = \left(\frac{x^{2}}{2} + \frac{9 \ln\left(\left|{x^{2} - 9}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly