Integraali $$$\frac{x^{3}}{z} - 2$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(\frac{x^{3}}{z} - 2\right)\, dx$$$.
Ratkaisu
Integroi termi kerrallaan:
$${\color{red}{\int{\left(\frac{x^{3}}{z} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{\frac{x^{3}}{z} d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=2$$$:
$$\int{\frac{x^{3}}{z} d x} - {\color{red}{\int{2 d x}}} = \int{\frac{x^{3}}{z} d x} - {\color{red}{\left(2 x\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{z}$$$ ja $$$f{\left(x \right)} = x^{3}$$$:
$$- 2 x + {\color{red}{\int{\frac{x^{3}}{z} d x}}} = - 2 x + {\color{red}{\frac{\int{x^{3} d x}}{z}}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=3$$$:
$$- 2 x + \frac{{\color{red}{\int{x^{3} d x}}}}{z}=- 2 x + \frac{{\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{z}=- 2 x + \frac{{\color{red}{\left(\frac{x^{4}}{4}\right)}}}{z}$$
Näin ollen,
$$\int{\left(\frac{x^{3}}{z} - 2\right)d x} = \frac{x^{4}}{4 z} - 2 x$$
Lisää integrointivakio:
$$\int{\left(\frac{x^{3}}{z} - 2\right)d x} = \frac{x^{4}}{4 z} - 2 x+C$$
Vastaus
$$$\int \left(\frac{x^{3}}{z} - 2\right)\, dx = \left(\frac{x^{4}}{4 z} - 2 x\right) + C$$$A