Funktion $$$\frac{1}{x^{\frac{8}{3}}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{x^{\frac{8}{3}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{x^{\frac{8}{3}}}\, dx$$$.

Ratkaisu

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{8}{3}$$$:

$${\color{red}{\int{\frac{1}{x^{\frac{8}{3}}} d x}}}={\color{red}{\int{x^{- \frac{8}{3}} d x}}}={\color{red}{\frac{x^{- \frac{8}{3} + 1}}{- \frac{8}{3} + 1}}}={\color{red}{\left(- \frac{3 x^{- \frac{5}{3}}}{5}\right)}}={\color{red}{\left(- \frac{3}{5 x^{\frac{5}{3}}}\right)}}$$

Näin ollen,

$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}$$

Lisää integrointivakio:

$$\int{\frac{1}{x^{\frac{8}{3}}} d x} = - \frac{3}{5 x^{\frac{5}{3}}}+C$$

Vastaus

$$$\int \frac{1}{x^{\frac{8}{3}}}\, dx = - \frac{3}{5 x^{\frac{5}{3}}} + C$$$A


Please try a new game Rotatly