Funktion $$$\frac{1}{\sqrt[6]{x}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{\sqrt[6]{x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{\sqrt[6]{x}}\, dx$$$.

Ratkaisu

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{1}{6}$$$:

$${\color{red}{\int{\frac{1}{\sqrt[6]{x}} d x}}}={\color{red}{\int{x^{- \frac{1}{6}} d x}}}={\color{red}{\frac{x^{- \frac{1}{6} + 1}}{- \frac{1}{6} + 1}}}={\color{red}{\left(\frac{6 x^{\frac{5}{6}}}{5}\right)}}$$

Näin ollen,

$$\int{\frac{1}{\sqrt[6]{x}} d x} = \frac{6 x^{\frac{5}{6}}}{5}$$

Lisää integrointivakio:

$$\int{\frac{1}{\sqrt[6]{x}} d x} = \frac{6 x^{\frac{5}{6}}}{5}+C$$

Vastaus

$$$\int \frac{1}{\sqrt[6]{x}}\, dx = \frac{6 x^{\frac{5}{6}}}{5} + C$$$A


Please try a new game Rotatly