Funktion $$$2 x^{\frac{4}{3}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int 2 x^{\frac{4}{3}}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = x^{\frac{4}{3}}$$$:
$${\color{red}{\int{2 x^{\frac{4}{3}} d x}}} = {\color{red}{\left(2 \int{x^{\frac{4}{3}} d x}\right)}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{4}{3}$$$:
$$2 {\color{red}{\int{x^{\frac{4}{3}} d x}}}=2 {\color{red}{\frac{x^{1 + \frac{4}{3}}}{1 + \frac{4}{3}}}}=2 {\color{red}{\left(\frac{3 x^{\frac{7}{3}}}{7}\right)}}$$
Näin ollen,
$$\int{2 x^{\frac{4}{3}} d x} = \frac{6 x^{\frac{7}{3}}}{7}$$
Lisää integrointivakio:
$$\int{2 x^{\frac{4}{3}} d x} = \frac{6 x^{\frac{7}{3}}}{7}+C$$
Vastaus
$$$\int 2 x^{\frac{4}{3}}\, dx = \frac{6 x^{\frac{7}{3}}}{7} + C$$$A