Integraali $$$u v$$$:stä muuttujan $$$u$$$ suhteen

Laskin löytää funktion $$$u v$$$ integraalin/kantafunktion muuttujan $$$u$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int u v\, du$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=v$$$ ja $$$f{\left(u \right)} = u$$$:

$${\color{red}{\int{u v d u}}} = {\color{red}{v \int{u d u}}}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$v {\color{red}{\int{u d u}}}=v {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=v {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Näin ollen,

$$\int{u v d u} = \frac{u^{2} v}{2}$$

Lisää integrointivakio:

$$\int{u v d u} = \frac{u^{2} v}{2}+C$$

Vastaus

$$$\int u v\, du = \frac{u^{2} v}{2} + C$$$A


Please try a new game Rotatly