Funktion $$$\tan^{2}{\left(4 x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \tan^{2}{\left(4 x \right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=4 x$$$.
Tällöin $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{4}$$$.
Näin ollen,
$${\color{red}{\int{\tan^{2}{\left(4 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{4} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{4}$$$ ja $$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{4}\right)}}$$
Olkoon $$$v=\tan{\left(u \right)}$$$.
Tällöin $$$u=\operatorname{atan}{\left(v \right)}$$$ ja $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$$\frac{{\color{red}{\int{\tan^{2}{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{4}$$
Kirjoita murtolauseke uudelleen ja jaa se osamurtoihin:
$$\frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{4} = \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{4}$$
Integroi termi kerrallaan:
$$\frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{4} = \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{4}$$
Sovella vakiosääntöä $$$\int c\, dv = c v$$$ käyttäen $$$c=1$$$:
$$- \frac{\int{\frac{1}{v^{2} + 1} d v}}{4} + \frac{{\color{red}{\int{1 d v}}}}{4} = - \frac{\int{\frac{1}{v^{2} + 1} d v}}{4} + \frac{{\color{red}{v}}}{4}$$
Funktion $$$\frac{1}{v^{2} + 1}$$$ integraali on $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$\frac{v}{4} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{4} = \frac{v}{4} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{4}$$
Muista, että $$$v=\tan{\left(u \right)}$$$:
$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{4} + \frac{{\color{red}{v}}}{4} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)}}{4} + \frac{{\color{red}{\tan{\left(u \right)}}}}{4}$$
Muista, että $$$u=4 x$$$:
$$\frac{\tan{\left({\color{red}{u}} \right)}}{4} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)}}{4} = \frac{\tan{\left({\color{red}{\left(4 x\right)}} \right)}}{4} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{\left(4 x\right)}} \right)} \right)}}{4}$$
Näin ollen,
$$\int{\tan^{2}{\left(4 x \right)} d x} = \frac{\tan{\left(4 x \right)}}{4} - \frac{\operatorname{atan}{\left(\tan{\left(4 x \right)} \right)}}{4}$$
Sievennä:
$$\int{\tan^{2}{\left(4 x \right)} d x} = - x + \frac{\tan{\left(4 x \right)}}{4}$$
Lisää integrointivakio:
$$\int{\tan^{2}{\left(4 x \right)} d x} = - x + \frac{\tan{\left(4 x \right)}}{4}+C$$
Vastaus
$$$\int \tan^{2}{\left(4 x \right)}\, dx = \left(- x + \frac{\tan{\left(4 x \right)}}{4}\right) + C$$$A