Funktion $$$t \ln\left(t\right)$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int t \ln\left(t\right)\, dt$$$.
Ratkaisu
Integraalin $$$\int{t \ln{\left(t \right)} d t}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(t \right)}$$$ ja $$$\operatorname{dv}=t dt$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(t \right)}\right)^{\prime }dt=\frac{dt}{t}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{t d t}=\frac{t^{2}}{2}$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$${\color{red}{\int{t \ln{\left(t \right)} d t}}}={\color{red}{\left(\ln{\left(t \right)} \cdot \frac{t^{2}}{2}-\int{\frac{t^{2}}{2} \cdot \frac{1}{t} d t}\right)}}={\color{red}{\left(\frac{t^{2} \ln{\left(t \right)}}{2} - \int{\frac{t}{2} d t}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(t \right)} = t$$$:
$$\frac{t^{2} \ln{\left(t \right)}}{2} - {\color{red}{\int{\frac{t}{2} d t}}} = \frac{t^{2} \ln{\left(t \right)}}{2} - {\color{red}{\left(\frac{\int{t d t}}{2}\right)}}$$
Sovella potenssisääntöä $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:
$$\frac{t^{2} \ln{\left(t \right)}}{2} - \frac{{\color{red}{\int{t d t}}}}{2}=\frac{t^{2} \ln{\left(t \right)}}{2} - \frac{{\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{2}=\frac{t^{2} \ln{\left(t \right)}}{2} - \frac{{\color{red}{\left(\frac{t^{2}}{2}\right)}}}{2}$$
Näin ollen,
$$\int{t \ln{\left(t \right)} d t} = \frac{t^{2} \ln{\left(t \right)}}{2} - \frac{t^{2}}{4}$$
Sievennä:
$$\int{t \ln{\left(t \right)} d t} = \frac{t^{2} \left(2 \ln{\left(t \right)} - 1\right)}{4}$$
Lisää integrointivakio:
$$\int{t \ln{\left(t \right)} d t} = \frac{t^{2} \left(2 \ln{\left(t \right)} - 1\right)}{4}+C$$
Vastaus
$$$\int t \ln\left(t\right)\, dt = \frac{t^{2} \left(2 \ln\left(t\right) - 1\right)}{4} + C$$$A