Funktion $$$\sqrt{2} \sqrt{\frac{1}{x}}$$$ integraali

Laskin löytää funktion $$$\sqrt{2} \sqrt{\frac{1}{x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sqrt{2} \sqrt{\frac{1}{x}}\, dx$$$.

Ratkaisu

Syöte kirjoitetaan muotoon: $$$\int{\sqrt{2} \sqrt{\frac{1}{x}} d x}=\int{\frac{\sqrt{2}}{\sqrt{x}} d x}$$$.

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\sqrt{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$${\color{red}{\int{\frac{\sqrt{2}}{\sqrt{x}} d x}}} = {\color{red}{\sqrt{2} \int{\frac{1}{\sqrt{x}} d x}}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{1}{2}$$$:

$$\sqrt{2} {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}=\sqrt{2} {\color{red}{\int{x^{- \frac{1}{2}} d x}}}=\sqrt{2} {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\sqrt{2} {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}=\sqrt{2} {\color{red}{\left(2 \sqrt{x}\right)}}$$

Näin ollen,

$$\int{\frac{\sqrt{2}}{\sqrt{x}} d x} = 2 \sqrt{2} \sqrt{x}$$

Lisää integrointivakio:

$$\int{\frac{\sqrt{2}}{\sqrt{x}} d x} = 2 \sqrt{2} \sqrt{x}+C$$

Vastaus

$$$\int \sqrt{2} \sqrt{\frac{1}{x}}\, dx = 2 \sqrt{2} \sqrt{x} + C$$$A


Please try a new game Rotatly