Funktion $$$\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx$$$.
Ratkaisu
Expand the expression:
$${\color{red}{\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{2 \sin{\left(x \right)} d x} - \int{3 \sin^{3}{\left(x \right)} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=3$$$ ja $$$f{\left(x \right)} = \sin^{3}{\left(x \right)}$$$:
$$\int{2 \sin{\left(x \right)} d x} - {\color{red}{\int{3 \sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - {\color{red}{\left(3 \int{\sin^{3}{\left(x \right)} d x}\right)}}$$
Irrota yksi sini ja kirjoita kaikki muu kosinin termeinä käyttäen kaavaa $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$, jossa $$$\alpha=x$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$
Olkoon $$$u=\cos{\left(x \right)}$$$.
Tällöin $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sin{\left(x \right)} dx = - du$$$.
Näin ollen,
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Integroi termi kerrallaan:
$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{\int{1 d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{u}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{u^{2} d u}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Muista, että $$$u=\cos{\left(x \right)}$$$:
$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{u}} - {\color{red}{u}}^{3} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\cos{\left(x \right)}}} - {\color{red}{\cos{\left(x \right)}}}^{3}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\int{2 \sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\left(2 \int{\sin{\left(x \right)} d x}\right)}}$$
Sinifunktion integraali on $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Näin ollen,
$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}$$
Lisää integrointivakio:
$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}+C$$
Vastaus
$$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx = \left(- \cos^{3}{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A