Funktion $$$\frac{\theta \sin{\left(1 \right)}}{4}$$$ integraali

Laskin löytää funktion $$$\frac{\theta \sin{\left(1 \right)}}{4}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\theta \sin{\left(1 \right)}}{4}\, d\theta$$$.

Trigonometriset funktiot odottavat, että argumentti on radiaaneina. Jos haluat antaa argumentin asteina, kerro se luvulla pi/180, esim. kirjoita 45° muodossa 45*pi/180, tai käytä vastaavaa funktiota lisäämällä 'd', esim. kirjoita sin(45°) muodossa sind(45).

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ käyttäen $$$c=\frac{\sin{\left(1 \right)}}{4}$$$ ja $$$f{\left(\theta \right)} = \theta$$$:

$${\color{red}{\int{\frac{\theta \sin{\left(1 \right)}}{4} d \theta}}} = {\color{red}{\left(\frac{\sin{\left(1 \right)} \int{\theta d \theta}}{4}\right)}}$$

Sovella potenssisääntöä $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\frac{\sin{\left(1 \right)} {\color{red}{\int{\theta d \theta}}}}{4}=\frac{\sin{\left(1 \right)} {\color{red}{\frac{\theta^{1 + 1}}{1 + 1}}}}{4}=\frac{\sin{\left(1 \right)} {\color{red}{\left(\frac{\theta^{2}}{2}\right)}}}{4}$$

Näin ollen,

$$\int{\frac{\theta \sin{\left(1 \right)}}{4} d \theta} = \frac{\theta^{2} \sin{\left(1 \right)}}{8}$$

Lisää integrointivakio:

$$\int{\frac{\theta \sin{\left(1 \right)}}{4} d \theta} = \frac{\theta^{2} \sin{\left(1 \right)}}{8}+C$$

Vastaus

$$$\int \frac{\theta \sin{\left(1 \right)}}{4}\, d\theta = \frac{\theta^{2} \sin{\left(1 \right)}}{8} + C$$$A


Please try a new game Rotatly