Integraali $$$\sin{\left(2 t - 2 x \right)}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin{\left(2 t - 2 x \right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=2 t - 2 x$$$.
Tällöin $$$du=\left(2 t - 2 x\right)^{\prime }dx = - 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - \frac{du}{2}$$$.
Näin ollen,
$${\color{red}{\int{\sin{\left(2 t - 2 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=- \frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Muista, että $$$u=2 t - 2 x$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{\left(2 t - 2 x\right)}} \right)}}{2}$$
Näin ollen,
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 t - 2 x \right)}}{2}$$
Sievennä:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}$$
Lisää integrointivakio:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}+C$$
Vastaus
$$$\int \sin{\left(2 t - 2 x \right)}\, dx = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2} + C$$$A