Funktion $$$\frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}}\, dx$$$.
Ratkaisu
Kerro osoittaja ja nimittäjä luvulla $$$\cos^{2}{\left(x \right)}$$$ ja muunna $$$\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$ muotoon $$$\tan^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}}$$
Muunna $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ muotoon $$$\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}}$$
Olkoon $$$u=\tan{\left(x \right)}$$$.
Tällöin $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(x \right)} dx = du$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} d u}}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$${\color{red}{\int{u^{2} d u}}}={\color{red}{\frac{u^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Muista, että $$$u=\tan{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{3}}{3} = \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3}$$
Näin ollen,
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}} d x} = \frac{\tan^{3}{\left(x \right)}}{3}$$
Lisää integrointivakio:
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}} d x} = \frac{\tan^{3}{\left(x \right)}}{3}+C$$
Vastaus
$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}}\, dx = \frac{\tan^{3}{\left(x \right)}}{3} + C$$$A