Funktion $$$\sin{\left(\frac{\pi x}{30} \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx$$$.
Ratkaisu
Olkoon $$$u=\frac{\pi x}{30}$$$.
Tällöin $$$du=\left(\frac{\pi x}{30}\right)^{\prime }dx = \frac{\pi}{30} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{30 du}{\pi}$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\sin{\left(\frac{\pi x}{30} \right)} d x}}} = {\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{30}{\pi}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}} = {\color{red}{\left(\frac{30 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{30 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{30 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
Muista, että $$$u=\frac{\pi x}{30}$$$:
$$- \frac{30 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{30 \cos{\left({\color{red}{\left(\frac{\pi x}{30}\right)}} \right)}}{\pi}$$
Näin ollen,
$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}$$
Lisää integrointivakio:
$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}+C$$
Vastaus
$$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi} + C$$$A