Funktion $$$\sin^{x}{\left(1 \right)}$$$ integraali

Laskin löytää funktion $$$\sin^{x}{\left(1 \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sin^{x}{\left(1 \right)}\, dx$$$.

Trigonometriset funktiot odottavat, että argumentti on radiaaneina. Jos haluat antaa argumentin asteina, kerro se luvulla pi/180, esim. kirjoita 45° muodossa 45*pi/180, tai käytä vastaavaa funktiota lisäämällä 'd', esim. kirjoita sin(45°) muodossa sind(45).

Ratkaisu

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\sin{\left(1 \right)}$$$:

$${\color{red}{\int{\sin^{x}{\left(1 \right)} d x}}} = {\color{red}{\frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}}}$$

Näin ollen,

$$\int{\sin^{x}{\left(1 \right)} d x} = \frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}$$

Lisää integrointivakio:

$$\int{\sin^{x}{\left(1 \right)} d x} = \frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}+C$$

Vastaus

$$$\int \sin^{x}{\left(1 \right)}\, dx = \frac{\sin^{x}{\left(1 \right)}}{\ln\left(\sin{\left(1 \right)}\right)} + C$$$A


Please try a new game Rotatly