Funktion $$$\sec^{6}{\left(x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sec^{6}{\left(x \right)}\, dx$$$.
Ratkaisu
Ota kaksi sekanttia erilleen ja ilmaise kaikki muu tangenttifunktion avulla, käyttäen kaavaa $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$, jossa $$$\alpha=x$$$:
$${\color{red}{\int{\sec^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \sec^{2}{\left(x \right)} d x}}}$$
Olkoon $$$u=\tan{\left(x \right)}$$$.
Tällöin $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(x \right)} dx = du$$$.
Integraali muuttuu muotoon
$${\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(u^{2} + 1\right)^{2} d u}}}$$
Expand the expression:
$${\color{red}{\int{\left(u^{2} + 1\right)^{2} d u}}} = {\color{red}{\int{\left(u^{4} + 2 u^{2} + 1\right)d u}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(u^{4} + 2 u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$\int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{1 d u}}} = \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{u}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=4$$$:
$$u + \int{2 u^{2} d u} + {\color{red}{\int{u^{4} d u}}}=u + \int{2 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u + \int{2 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=2$$$ ja $$$f{\left(u \right)} = u^{2}$$$:
$$\frac{u^{5}}{5} + u + {\color{red}{\int{2 u^{2} d u}}} = \frac{u^{5}}{5} + u + {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$\frac{u^{5}}{5} + u + 2 {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u + 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u + 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Muista, että $$$u=\tan{\left(x \right)}$$$:
$${\color{red}{u}} + \frac{2 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = {\color{red}{\tan{\left(x \right)}}} + \frac{2 {\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
Näin ollen,
$$\int{\sec^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}$$
Lisää integrointivakio:
$$\int{\sec^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}+C$$
Vastaus
$$$\int \sec^{6}{\left(x \right)}\, dx = \left(\frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}\right) + C$$$A