Integraali $$$f r^{2} t^{2}$$$:stä muuttujan $$$t$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int f r^{2} t^{2}\, dt$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=f r^{2}$$$ ja $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}{\int{f r^{2} t^{2} d t}}} = {\color{red}{f r^{2} \int{t^{2} d t}}}$$
Sovella potenssisääntöä $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$f r^{2} {\color{red}{\int{t^{2} d t}}}=f r^{2} {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=f r^{2} {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Näin ollen,
$$\int{f r^{2} t^{2} d t} = \frac{f r^{2} t^{3}}{3}$$
Lisää integrointivakio:
$$\int{f r^{2} t^{2} d t} = \frac{f r^{2} t^{3}}{3}+C$$
Vastaus
$$$\int f r^{2} t^{2}\, dt = \frac{f r^{2} t^{3}}{3} + C$$$A