Funktion $$$e - \ln\left(x + 1\right)$$$ integraali

Laskin löytää funktion $$$e - \ln\left(x + 1\right)$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(e - \ln\left(x + 1\right)\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(e - \ln{\left(x + 1 \right)}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{\ln{\left(x + 1 \right)} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=e$$$:

$$- \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{\int{e d x}}} = - \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{e x}}$$

Olkoon $$$u=x + 1$$$.

Tällöin $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Näin ollen,

$$e x - {\color{red}{\int{\ln{\left(x + 1 \right)} d x}}} = e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}$$

Integraalin $$$\int{\ln{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.

Olkoon $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ ja $$$\operatorname{dv}=du$$$.

Tällöin $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d u}=u$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$$e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}=e x - {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=e x - {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$- u \ln{\left(u \right)} + e x + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + e x + {\color{red}{u}}$$

Muista, että $$$u=x + 1$$$:

$$e x + {\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = e x + {\color{red}{\left(x + 1\right)}} - {\color{red}{\left(x + 1\right)}} \ln{\left({\color{red}{\left(x + 1\right)}} \right)}$$

Näin ollen,

$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)} + 1$$

Lisää integraatiovakio (ja poista lausekkeesta vakio):

$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)}+C$$

Vastaus

$$$\int \left(e - \ln\left(x + 1\right)\right)\, dx = \left(x + e x - \left(x + 1\right) \ln\left(x + 1\right)\right) + C$$$A


Please try a new game Rotatly