Funktion $$$e^{\sqrt{2} \sqrt{x}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int e^{\sqrt{2} \sqrt{x}}\, dx$$$.
Ratkaisu
Olkoon $$$u=\sqrt{2} \sqrt{x}$$$.
Tällöin $$$du=\left(\sqrt{2} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{2}}{2 \sqrt{x}} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\frac{dx}{\sqrt{x}} = \sqrt{2} du$$$.
Näin ollen,
$${\color{red}{\int{e^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{u e^{u} d u}}}$$
Integraalin $$$\int{u e^{u} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Olkoon $$$\operatorname{g}=u$$$ ja $$$\operatorname{dv}=e^{u} du$$$.
Tällöin $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (vaiheet ovat nähtävissä »).
Integraali muuttuu muotoon
$${\color{red}{\int{u e^{u} d u}}}={\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}={\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$u e^{u} - {\color{red}{\int{e^{u} d u}}} = u e^{u} - {\color{red}{e^{u}}}$$
Muista, että $$$u=\sqrt{2} \sqrt{x}$$$:
$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} = - e^{{\color{red}{\sqrt{2} \sqrt{x}}}} + {\color{red}{\sqrt{2} \sqrt{x}}} e^{{\color{red}{\sqrt{2} \sqrt{x}}}}$$
Näin ollen,
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x}} - e^{\sqrt{2} \sqrt{x}}$$
Sievennä:
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}$$
Lisää integrointivakio:
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}+C$$
Vastaus
$$$\int e^{\sqrt{2} \sqrt{x}}\, dx = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}} + C$$$A