Funktion $$$x e^{2} \cos{\left(2 x \right)}$$$ integraali

Laskin löytää funktion $$$x e^{2} \cos{\left(2 x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int x e^{2} \cos{\left(2 x \right)}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=e^{2}$$$ ja $$$f{\left(x \right)} = x \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{x e^{2} \cos{\left(2 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(2 x \right)} d x}}}$$

Integraalin $$$\int{x \cos{\left(2 x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=x$$$ ja $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.

Tällöin $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$$e^{2} {\color{red}{\int{x \cos{\left(2 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}\right)$$

Olkoon $$$u=2 x$$$.

Tällöin $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{2}$$$.

Integraali voidaan kirjoittaa muotoon

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right)$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}\right)$$

Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}\right)$$

Muista, että $$$u=2 x$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}\right)$$

Näin ollen,

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}\right) e^{2}$$

Sievennä:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}$$

Lisää integrointivakio:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}+C$$

Vastaus

$$$\int x e^{2} \cos{\left(2 x \right)}\, dx = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4} + C$$$A


Please try a new game Rotatly